Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Mol Neurobiol ; 2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38157119

ABSTRACT

Previous studies have shown that the C-C motif chemokine ligand 2 (CCL2) is widely expressed in the nervous system and involved in regulating the development of chronic pain and related anxiety-like behaviors, but its precise mechanism is still unclear. This paper provides an in-depth examination of the involvement of CCL2-CCR2 signaling in the anterior cingulate cortex (ACC) in intraplantar injection of complete Freund's adjuvant (CFA) leading to inflammatory pain and its concomitant anxiety-like behaviors by modulation of glutamatergic N-methyl-D-aspartate receptor (NMDAR). Our findings suggest that local bilateral injection of CCR2 antagonist in the ACC inhibits CFA-induced inflammatory pain and anxiety-like behavior. Meanwhile, the expression of CCR2 and CCL2 was significantly increased in ACC after 14 days of intraplantar injection of CFA, and CCR2 was mainly expressed in excitatory neurons. Whole-cell patch-clamp recordings showed that the CCR2 inhibitor RS504393 reduced the frequency of miniature excitatory postsynaptic currents (mEPSC) in ACC, and CCL2 was involved in the regulation of NMDAR-induced current in ACC neurons in the pathological state. In addition, local injection of the NR2B inhibitor of NMDAR subunits, Ro 25-6981, attenuated the effects of CCL2-induced hyperalgesia and anxiety-like behavior in the ACC. In summary, CCL2 acts on CCR2 in ACC excitatory neurons and participates in the regulation of CFA-induced pain and related anxiety-like behaviors through upregulation of NR2B. CCR2 in the ACC neuron may be a potential target for the treatment of chronic inflammatory pain and pain-related anxiety.

2.
Nat Commun ; 13(1): 728, 2022 02 07.
Article in English | MEDLINE | ID: mdl-35132099

ABSTRACT

Postsynaptic NMDARs at spinal synapses are required for postsynaptic long-term potentiation and chronic pain. However, how presynaptic NMDARs (PreNMDARs) in spinal nociceptor terminals control presynaptic plasticity and pain hypersensitivity has remained unclear. Here we report that PreNMDARs in spinal nociceptor terminals modulate synaptic transmission in a nociceptive tone-dependent manner. PreNMDARs depresses presynaptic transmission in basal state, while paradoxically causing presynaptic potentiation upon injury. This state-dependent modulation is dependent on Ca2+ influx via PreNMDARs. Small conductance Ca2+-activated K+ (SK) channels are responsible for PreNMDARs-mediated synaptic depression. Rather, tissue inflammation induces PreNMDARs-PKG-I-dependent BDNF secretion from spinal nociceptor terminals, leading to SK channels downregulation, which in turn converts presynaptic depression to potentiation. Our findings shed light on the state-dependent characteristics of PreNMDARs in spinal nociceptor terminals on modulating nociceptive transmission and revealed a mechanism underlying state-dependent transition. Moreover, we identify PreNMDARs in spinal nociceptor terminals as key constituents of activity-dependent pain sensitization.


Subject(s)
Chronic Pain/physiopathology , Nociceptors/metabolism , Presynaptic Terminals/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Calcium/metabolism , Chronic Pain/genetics , Chronic Pain/metabolism , Cyclic GMP-Dependent Protein Kinase Type I/genetics , Cyclic GMP-Dependent Protein Kinase Type I/metabolism , Ganglia, Spinal/cytology , Ganglia, Spinal/physiology , Inflammation , Long-Term Potentiation , Long-Term Synaptic Depression , Mice , Mice, Transgenic , Periaqueductal Gray/cytology , Periaqueductal Gray/physiology , Potassium Channels, Calcium-Activated/genetics , Potassium Channels, Calcium-Activated/metabolism , Receptors, N-Methyl-D-Aspartate/genetics , Synaptic Transmission
3.
J Clin Invest ; 131(15)2021 08 02.
Article in English | MEDLINE | ID: mdl-34156983

ABSTRACT

Patients with neuropathic pain often experience comorbid psychiatric disorders. Cellular plasticity in the anterior cingulate cortex (ACC) is assumed to be a critical interface for pain perception and emotion. However, substantial efforts have thus far been focused on the intracellular mechanisms of plasticity rather than the extracellular alterations that might trigger and facilitate intracellular changes. Laminin, a key element of the extracellular matrix (ECM), consists of one α-, one ß-, and one γ-chain and is implicated in several pathophysiological processes. Here, we showed in mice that laminin ß1 (LAMB1) in the ACC was significantly downregulated upon peripheral neuropathy. Knockdown of LAMB1 in the ACC exacerbated pain sensitivity and induced anxiety and depression. Mechanistic analysis revealed that loss of LAMB1 caused actin dysregulation via interaction with integrin ß1 and the subsequent Src-dependent RhoA/LIMK/cofilin pathway, leading to increased presynaptic transmitter release probability and abnormal postsynaptic spine remodeling, which in turn orchestrated the structural and functional plasticity of pyramidal neurons and eventually resulted in pain hypersensitivity and anxiodepression. This study sheds new light on the functional capability of ECM LAMB1 in modulating pain plasticity and identifies a mechanism that conveys extracellular alterations to intracellular plasticity. Moreover, we identified cingulate LAMB1/integrin ß1 signaling as a promising therapeutic target for the treatment of neuropathic pain and associated anxiodepression.


Subject(s)
Anxiety/metabolism , Behavior, Animal , Depression/metabolism , Laminin/metabolism , Neuralgia/metabolism , Peripheral Nervous System Diseases/metabolism , Animals , Anxiety/genetics , Depression/genetics , Female , Gene Knockdown Techniques , Gyrus Cinguli/metabolism , Laminin/genetics , Mice , Neuralgia/genetics , Peripheral Nervous System Diseases/genetics
4.
Pain ; 162(1): 135-151, 2021 01.
Article in English | MEDLINE | ID: mdl-32773598

ABSTRACT

Patients with neuropathic pain often experience exaggerated pain and anxiety. Central sensitization has been linked with the maintenance of neuropathic pain and may become an autonomous pain generator. Conversely, emerging evidence accumulated that central sensitization is initiated and maintained by ongoing nociceptive primary afferent inputs. However, it remains elusive what mechanisms underlie this phenomenon and which peripheral candidate contributes to central sensitization that accounts for pain hypersensitivity and pain-related anxiety. Previous studies have implicated peripherally localized cGMP-dependent protein kinase I (PKG-I) in plasticity of nociceptors and spinal synaptic transmission as well as inflammatory hyperalgesia. However, whether peripheral PKG-I contributes to cortical plasticity and hence maintains nerve injury-induced pain hypersensitivity and anxiety is unknown. Here, we demonstrated significant upregulation of PKG-I in ipsilateral L3 dorsal root ganglia (DRG), no change in L4 DRG, and downregulation in L5 DRG upon spared nerve injury. Genetic ablation of PKG-I specifically in nociceptors or post-treatment with intervertebral foramen injection of PKG-I antagonist, KT5823, attenuated the development and maintenance of spared nerve injury-induced bilateral pain hypersensitivity and anxiety. Mechanistic analysis revealed that activation of PKG-I in nociceptors is responsible for synaptic potentiation in the anterior cingulate cortex upon peripheral neuropathy through presynaptic mechanisms involving brain-derived neurotropic factor signaling. Our results revealed that PKG-I expressed in nociceptors is a key determinant for cingulate synaptic plasticity after nerve injury, which contributes to the maintenance of pain hypersensitivity and anxiety. Thereby, this study presents a strong basis for opening up a novel therapeutic target, PKG-I, in nociceptors for treatment of comorbidity of neuropathic pain and anxiety with least side effects.


Subject(s)
Cyclic GMP-Dependent Protein Kinase Type I , Neuralgia , Central Nervous System Sensitization , Ganglia, Spinal , Humans , Hyperalgesia/etiology , Neuralgia/etiology , Nociceptors
5.
Neurosci Bull ; 37(4): 478-496, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33355899

ABSTRACT

Tweety-homolog 1 (Ttyh1) is expressed in neural tissue and has been implicated in the generation of several brain diseases. However, its functional significance in pain processing is not understood. By disrupting the gene encoding Ttyh1, we found a loss of Ttyh1 in nociceptors and their central terminals in Ttyh1-deficient mice, along with a reduction in nociceptor excitability and synaptic transmission at identified synapses between nociceptors and spinal neurons projecting to the periaqueductal grey (PAG) in the basal state. More importantly, the peripheral inflammation-evoked nociceptor hyperexcitability and spinal synaptic potentiation recorded in spinal-PAG projection neurons were compromised in Ttyh1-deficient mice. Analysis of the paired-pulse ratio and miniature excitatory postsynaptic currents indicated a role of presynaptic Ttyh1 from spinal nociceptor terminals in the regulation of neurotransmitter release. Interfering with Ttyh1 specifically in nociceptors produces a comparable pain relief. Thus, in this study we demonstrated that Ttyh1 is a critical determinant of acute nociception and pain sensitization caused by peripheral inflammation.


Subject(s)
Nociceptors , Synaptic Transmission , Animals , Membrane Proteins/metabolism , Mice , Neurons/metabolism , Pain , Periaqueductal Gray
6.
Mol Brain ; 13(1): 161, 2020 11 23.
Article in English | MEDLINE | ID: mdl-33228784

ABSTRACT

Previous studies have shown that CCL2 may cause chronic pain, but the exact mechanism of central sensitization is unclear. In this article, we further explore the presynaptic role of CCL2. Behavioral experiments show that intervertebral foramen injection CCR2 antagonists into dorsal root ganglion (DRG) can inhibit the inflammatory pain caused by CCL2 in spinal cord. We raised the question of the role of presynaptic CCR2 in the spinal dorsal horn. Subsequent electron microscopy experiments showed that CCR2 was expressed in the presynaptic CGRP terminal in the spinal dorsal horn. CCL2 can enhance presynaptic calcium signal. Whole-cell patch-clamp recordings showed that CCL2 can enhance NMDAR-eEPSCs through presynaptic effects, and further application of glutamate sensor method proved that CCL2 can act on presynaptic CCR2 to increase the release of presynaptic glutamate. In conclusion, we suggest that CCL2 can directly act on the CCR2 on presynaptic terminals of sensory neurons in the spinal dorsal horn, leading to an increase in the release of presynaptic glutamate and participate in the formation of central sensitization.


Subject(s)
Chemokine CCL2/metabolism , Nociceptors/metabolism , Pain/metabolism , Pain/physiopathology , Presynaptic Terminals/metabolism , Receptors, CCR2/metabolism , Spinal Cord/physiopathology , Synaptic Transmission/physiology , Animals , Benzoxazines/pharmacology , Calcitonin Gene-Related Peptide/metabolism , Calcium Signaling/drug effects , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , Glutamic Acid/metabolism , Hyperalgesia/complications , Inflammation/pathology , Injections, Spinal , Mice, Inbred C57BL , Neurons/drug effects , Neurons/metabolism , Pain/complications , Presynaptic Terminals/drug effects , Protein Binding/drug effects , Spinal Cord/drug effects , Spinal Cord/ultrastructure , Spinal Cord Dorsal Horn/drug effects , Spinal Cord Dorsal Horn/ultrastructure , Spiro Compounds/pharmacology , Synaptic Transmission/drug effects , Up-Regulation/drug effects
7.
Neurosci Bull ; 36(11): 1344-1354, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32809188

ABSTRACT

Previous studies have shown that CCL2 (C-C motif chemokine ligand 2) induces chronic pain, but the exact mechanisms are still unknown. Here, we established models to explore the potential mechanisms. Behavioral experiments revealed that an antagonist of extracellular signal-regulated kinase (ERK) inhibited not only CCL2-induced inflammatory pain, but also pain responses induced by complete Freund's adjuvant. We posed the question of the intracellular signaling cascade involved. Subsequent experiments showed that CCL2 up-regulated the expression of phosphorylated ERK (pERK) and N-methyl D-aspartate receptor [NMDAR] subtype 2B (GluN2B); meanwhile, antagonists of CCR2 and ERK effectively reversed these phenomena. Whole-cell patch-clamp recordings revealed that CCL2 enhanced the NMDAR-induced currents via activating the pERK pathway, which was blocked by antagonists of GluN2B and ERK. In summary, we demonstrate that CCL2 directly interacts with CCR2 to enhance NMDAR-induced currents, eventually leading to inflammatory pain mainly through the CCL2-CCR2-pERK-GluN2B pathway.


Subject(s)
Chemokine CCL2/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , N-Methylaspartate , Pain , Receptors, N-Methyl-D-Aspartate/metabolism , Substantia Gelatinosa/physiology , Animals , Chemokine CCL2/antagonists & inhibitors , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Male , Mice , Mice, Inbred C57BL , N-Methylaspartate/metabolism , Neurons , Signal Transduction
8.
FASEB J ; 34(6): 8526-8543, 2020 06.
Article in English | MEDLINE | ID: mdl-32359120

ABSTRACT

Opioid analgesics remain the mainstay for managing intractable chronic pain, but their use is limited by detrimental side effects such as analgesic tolerance and hyperalgesia. Calcium-dependent synaptic plasticity is a key determinant in opiates tolerance and hyperalgesia. However, the exact substrates for this calcium-dependent synaptic plasticity in mediating these maladaptive processes are largely unknown. Canonical transient receptor potential 1, 4, and 5 (TRPC1, 4, 5) proteins assemble into heteromultimeric nonselective cation channels with high Ca2+ permeability and influence various neuronal functions. However, whether and how TRPC1/4/5 channels contribute to the development of opiates tolerance and hyperalgesia remains elusive. Here, we show that TRPC1/4/5 channels contribute to the generation of morphine tolerance and hyperalgesia. Chronic morphine exposure leads to upregulation of TRPC1/4/5 channels in the spinal cord. Spinally expressed TRPC1, TPRC4, and TRPC5 are required for chronic morphine-induced synaptic long-term potentiation (LTP) as well as remodeling of synaptic spines in the dorsal horn, thereby orchestrating functional and structural plasticity during the course of morphine-induced hyperalgesia and tolerance. These effects are attributed to TRPC1/4/5-mediated Ca2+ elevation in the spinal dorsal horn induced by chronic morphine treatment. This study identifies TRPC1/4/5 channels as a promising novel target to prevent the unwanted morphine tolerance and hyperalgesia.


Subject(s)
Hyperalgesia/chemically induced , Hyperalgesia/metabolism , Morphine/pharmacology , Neuronal Plasticity/physiology , Spinal Cord/metabolism , TRPC Cation Channels/metabolism , Analgesics/pharmacology , Analgesics, Opioid/pharmacology , Animals , Drug Tolerance/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neuronal Plasticity/drug effects , Neurons/drug effects , Neurons/metabolism , Spinal Cord/drug effects , Spinal Cord Dorsal Horn/drug effects , Spinal Cord Dorsal Horn/metabolism
9.
Neural Plast ; 2020: 3764193, 2020.
Article in English | MEDLINE | ID: mdl-32273889

ABSTRACT

Chronic pathological pain is one of the most intractable clinical problems faced by clinicians and can be devastating for patients. Despite much progress we have made in understanding chronic pain in the last decades, its underlying mechanisms remain elusive. It is assumed that abnormal increase of calcium levels in the cells is a key determinant in the transition from acute to chronic pain. Exploring molecular players mediating Ca2+ entry into cells and molecular mechanisms underlying activity-dependent changes in Ca2+ signaling in the somatosensory pain pathway is therefore helpful towards understanding the development of chronic, pathological pain. Canonical transient receptor potential (TRPC) channels form a subfamily of nonselective cation channels, which permit the permeability of Ca2+ and Na+ into the cells. Initiation of Ca2+ entry pathways by these channels triggers the development of many physiological and pathological functions. In this review, we will focus on the functional implication of TRPC channels in nociception with the elucidation of their role in the detection of external stimuli and nociceptive hypersensitivity.


Subject(s)
Neurons/physiology , Nociception/physiology , Pain/physiopathology , Transient Receptor Potential Channels/physiology , Animals , Brain/physiopathology , Calcium Signaling , Ganglia, Spinal/physiopathology , Humans , Neural Pathways/physiopathology
10.
Neuroscience ; 425: 29-38, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31805255

ABSTRACT

Brachial plexus avulsion (BPA) represents the most devastating nerve injury in the upper extremity and is always considered as a sophisticated problem due to its resistance to most standard pain relief medications or neurosurgical interventions. There is also a lack of understanding on the underlying mechanisms. Our study aimed to investigate whether spinal CCL2-CCR2 signaling contributed to the development of neuropathic pain following BPA via modulating glutamate N-methyl-d-aspartate receptor (NMDAR). A rat model of BPA on lower trunk (C8-T1) was established, and the sham- and BPA-operated animals were intrathecally injected with saline, C-C chemokine receptor type 2 (CCR2) inhibitor INCB3344 and NMDAR antagonist DL-AP5 one week postoperatively, the behavioral performance of the treated animals and expressions of C-C motif ligand 2 (CCL2), CCR2, and N-methyl-D-aspartic acid receptor 2B (NR2B) in spinal cord sections of each group were examined. It was shown that BPA injury significantly reduced mechanic withdrawal thresholds the next day after surgery until the end of the observation. Both CCL2 and CCR2 expressions increased in BPA rats compared to those in sham rats. CCL2 was mainly localized in astrocytes, and CCR2 was preferably expressed on astrocytes and neurons. Besides, NMDAR subunit NR2B increased in BPA-operated rats, which was reversed in response to CCR2 and NR2B inhibition. However, these inhibitors didn't change the spinal NMDAR level in sham rats. CCR2 and NMDAR inhibition efficiently alleviated mechanical allodynia caused by BPA either at early or late phase of neuropathic pain. Collectively, CCL2-CCR2 axis is associated with mechanical pain after BPA by elevating NMDAR signaling.


Subject(s)
Brachial Plexus/metabolism , Chemokine CCL2/metabolism , Neuralgia/metabolism , Receptors, CCR2/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Astrocytes/metabolism , Brachial Plexus/injuries , Disease Models, Animal , Female , Hyperalgesia/metabolism , Hyperalgesia/physiopathology , Neuralgia/physiopathology , Neurons/metabolism , Pain Measurement/methods , Rats, Sprague-Dawley , Spinal Cord/metabolism , Spinal Cord/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...